

# Cross Gamma approximations of a portfolio's CVA value

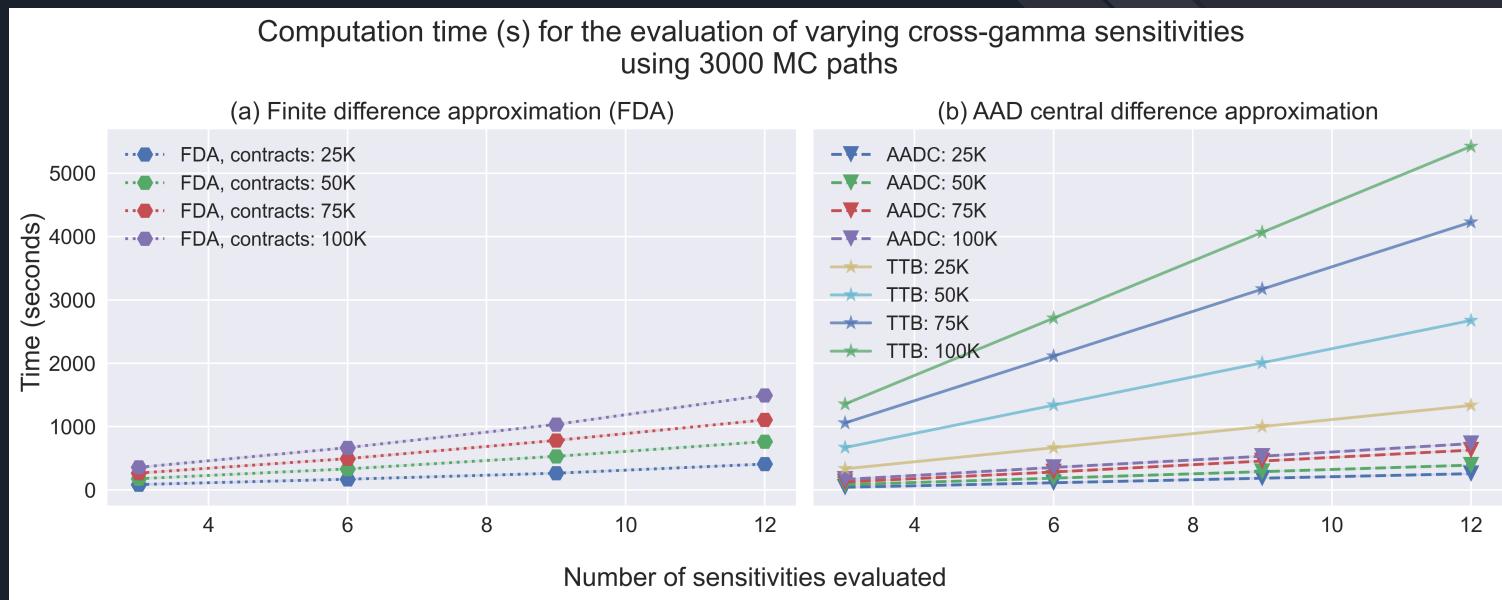
Comparing the performance of “bumping over AAD” for Tape-Based AAD vs Code Generation AAD to compute second-order greeks

**Stephan Bosch**  
[andre.bosch@ing.com](mailto:andre.bosch@ing.com)

# Experiment 3:

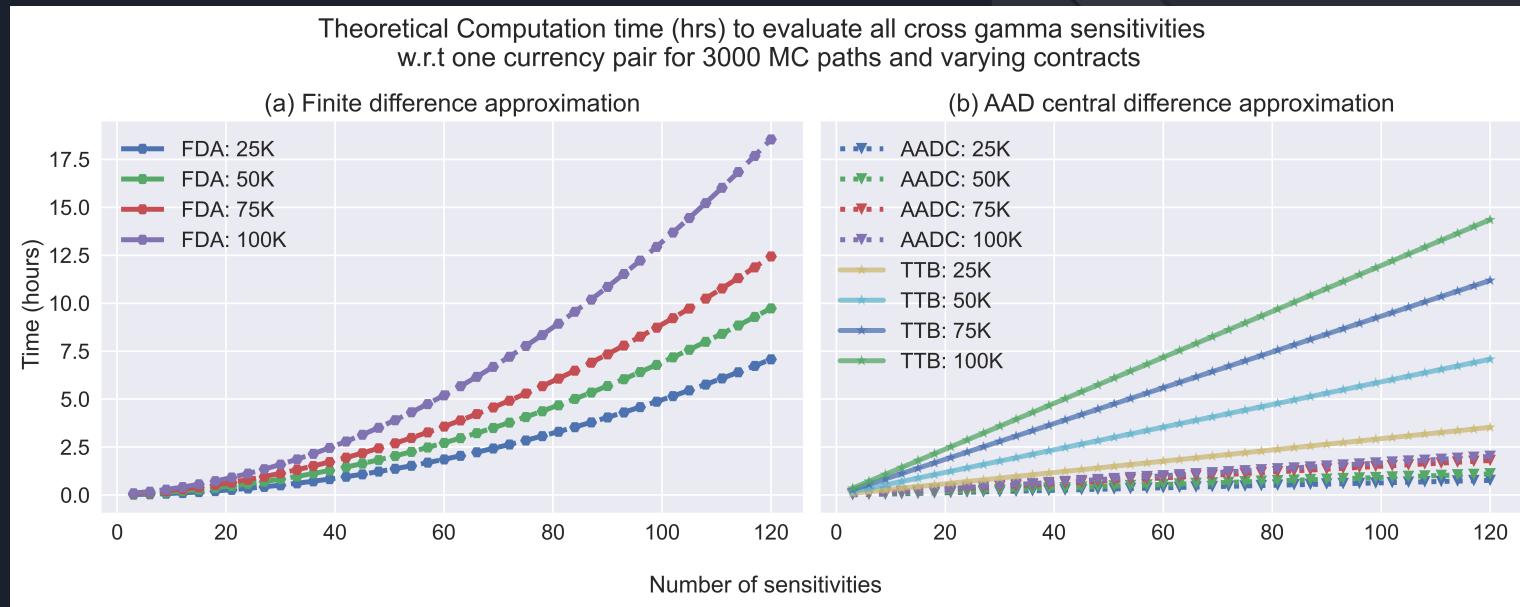
- The third and final experiment wanted to test what “bumping over AAD” offers with respect to the cross Gamma approximations of a portfolios CVA value
- Calculating the Cross Gamma Hessian entries w.r.t the points on the Volatility Term structure curves
- How do the approximation methods scale as we increase the computational load on the the respective engines

is defined below:


$$\frac{\partial^2 CVA}{\partial \theta_1 \partial \theta_2} = \left. \frac{CVA(\sigma_1^{+\Delta_1}, \sigma_2^{+\Delta_2}) + CVA(\sigma_1^{-\Delta_1}, \sigma_2^{-\Delta_2})}{4\Delta_1\Delta_2} \right\} - \left. \frac{CVA(\sigma_1^{+\Delta_1}, \sigma_2^{-\Delta_2}) - CVA(\sigma_1^{-\Delta_1}, \sigma_2^{+\Delta_2})}{4\Delta_1\Delta_2} \right\}$$

## “Bumping over AAD”

$$\frac{\partial CVA_{AAD}}{\partial \theta_\sigma} = \frac{CVA_{AAD}(\theta_\sigma + \Delta\theta_\sigma) - CVA_{AAD}(\theta_\sigma - \Delta\theta_\sigma)}{2\Delta\theta_\sigma} + \mathcal{O}(\Delta\theta_\sigma^2)$$


# Scaling behaviour of both engines:

## Quadratic vs linear scalability



# Scaling behaviour of both engines:

## Quadratic vs linear scalability



## For all 120 Cross Gamma Hessian entries (between two currencies)

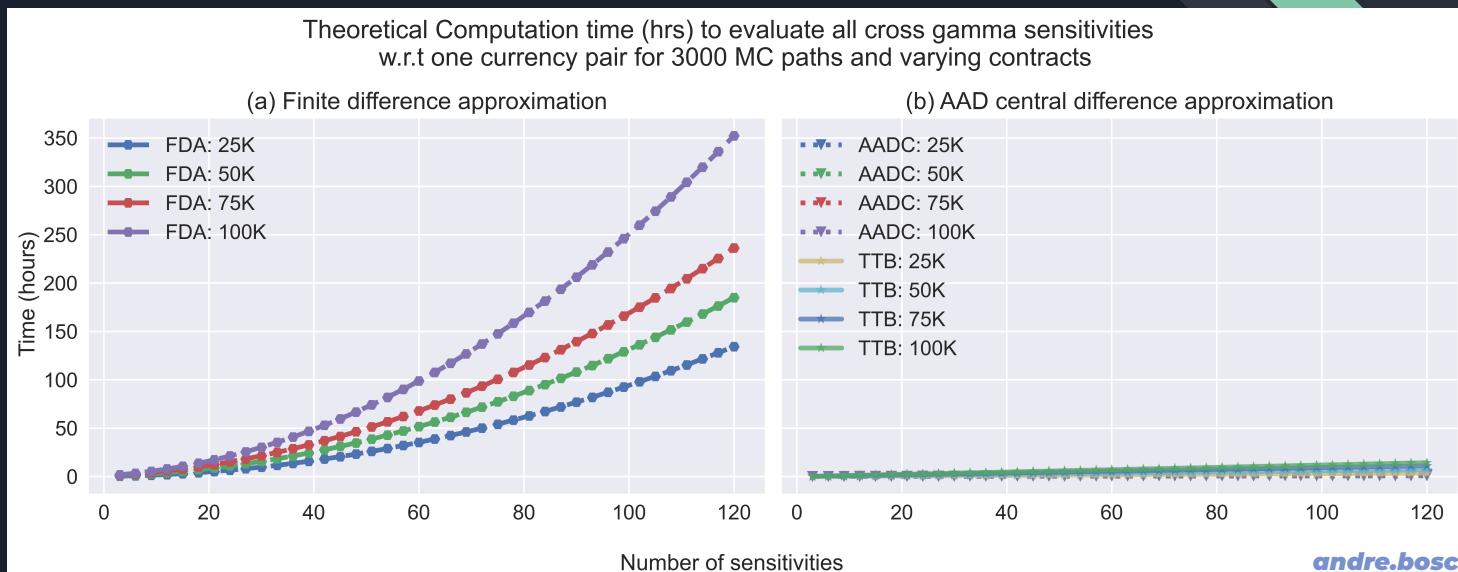
The evaluation of 120 Cross Gamma Hessian (**120 points of the Volatility term structure curves**) entries could then be computed w.r.t to two currencies and

$$\frac{\frac{\partial CVA_{AAD}}{\partial \theta_\sigma}}{GBP} = \frac{\frac{\partial CVA_{AAD}}{\partial \theta_\sigma} USD + \frac{\partial CVA_{AAD}}{\partial \theta_\sigma} USD}{2}$$

| Method                                          | Number of contracts in portfolio |        |        |         |
|-------------------------------------------------|----------------------------------|--------|--------|---------|
|                                                 | 25,000                           | 50,000 | 75,000 | 100,000 |
| Evaluation time (hrs)                           |                                  |        |        |         |
| B&R                                             | 6.32                             | 8.70   | 11.11  | 16.56   |
| B&AADC                                          | 0.77                             | 1.10   | 1.80   | 2.02    |
| B&TTB                                           | 3.52                             | 7.08   | 11.18  | 14.35   |
| Order of improvement attained ( $\mathcal{O}$ ) |                                  |        |        |         |
| B&AADC                                          | 0.96                             | 0.94   | 0.83   | 0.96    |
| B&TTB                                           | 0.31                             | 0.13   | 0.046  | 0.11    |
| Theoretical speed up                            |                                  |        |        |         |
| B&AADC                                          | 9.24                             | 8.82   | 6.90   | 9.19    |
| B&TTB                                           | 2.00                             | 1.37   | 1.11   | 1.29    |

TABLE 4.19: Theoretical time taken, Order of Improvement ( $\mathcal{O}$ ) and computational speed-up realised for the evaluation of all Cross gamma sensitivities (120) with respect to a single currency pair using finite difference approximations vs 'bumping' over AAD.

Employing 3000 MC paths


# For all 2280 Cross Gamma Hessian entries (between two currencies)

Using “bumping over AAD” does however house an incredibly **scalable advantage**

**All first-order adjoints are evaluated** w.r.t to the Volatility term structure curves

$$\frac{\partial CVA_{AAD}}{\partial \theta_\sigma}_{GBP} = \frac{\frac{\partial CVA_{AAD}}{\partial \theta_\sigma} x_{Currencies} + \frac{\partial CVA_{AAD}}{\partial \theta_\sigma} x_{Currencies}}{2}$$

Essentially producing the remaining 2280 Cross Gamma Hessian Entries by



# For all 2280 Cross Gamma Hessian entries (between two currencies)

Using “bumping over AAD” does however house an incredibly **scalable advantage**  
**All first-order adjoints are evaluated** w.r.t to the Volatility term structure curves

$$\frac{\partial CVA_{AAD}}{\partial \theta_\sigma \text{ GBP}} = \frac{\frac{\partial CVA_{AAD}}{\partial \theta_\sigma} \text{ xCurrencies} + \frac{\partial CVA_{AAD}}{\partial \theta_\sigma} \text{ xCurrencies}}{2}$$

Essentially producing the remaining 2280 Cross Gamma Hessian Entries by  
producing the original 120 !

| Method                                          | Number of contracts in portfolio |        |        |         |
|-------------------------------------------------|----------------------------------|--------|--------|---------|
|                                                 | 25,000                           | 50,000 | 75,000 | 100,000 |
| Evaluation time (hrs)                           |                                  |        |        |         |
| B&R                                             | 120.06                           | 165.23 | 211.09 | 314.63  |
| B&AADC                                          | 0.77                             | 1.10   | 1.80   | 2.02    |
| B&TTB                                           | 3.52                             | 7.08   | 11.18  | 14.35   |
| Order of improvement attained ( $\mathcal{O}$ ) |                                  |        |        |         |
| B&AADC                                          | 2.24                             | 2.22   | 2.11   | 2.24    |
| B&TTB                                           | 1.58                             | 1.41   | 1.32   | 1.38    |
| Theoretical speed up                            |                                  |        |        |         |
| B&AADC                                          | 175.64                           | 167.64 | 131.11 | 174.74  |
| B&TTB                                           | 38.11                            | 26.12  | 21.13  | 24.54   |

TABLE 4.21: Theoretical time taken, Order of Improvement ( $\mathcal{O}$ ) and computational speed-up realised for the evaluation of all Cross gamma sensitivities (2240) with respect to a main currency paired with all other currencies using finite difference approximations vs ‘bumping’ over AAD. Employing 3000 MC paths